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Coherence and radiative energy transfer for linear surface 
gravity waves in water of constant depth 

Hans M Pedersen and Ole J Lskberg 
Division of Physics, University ofTrondheim, Norwegian Institute of Technology, N-7034 
Trondheim, Noway 

Received 21 August 1991 

Abstract. The radiative energy transfer for partially cohirent water waves is analysed. For 
linear gravity waves in water of constant depth, the coherence properties are described 
within the framework of optical coherence theory. Exact energy transfer relations are 
derived and compared to similar relations for acoustical compression waves. On the basis 
of previous results for non-dispersive waves, an exact, geometrical description of the 
radiative energy transfer for dispersive water waves is derived. 7he theory reduces to 
the classical theory of radiative energy transfer within a quasihomogeneous wave model. 
The results are discussed in relation to the applications of the classical description for 
local wave energy prediction. 

1. Introduction 

The description of radiative energy transfer has traditionally been based on a purely 
phenomenological foundation: assuming that the wave energy transfer occurs along 
the rays of geometrical optics one describes it in terms of a radiation balance equation 
which totally neglects the wave nature of the radiation. However, in spite of its obvious 
limitations, the classical theory appears to give adequate and accurate predictions of 
the energy transfer for a large class of wave phenomena. For example: the classical 
description is extensively used in optics and astronomy for the description of energy 
transfer of electromagnetic waves (radiometry, radiative transfer theory) [ l ,  21, and 
essentially the same approach is used for wave prediction (hindcast models) and the 
description of surface wave interactions in oceanography [3-5]. 

Much attention has been given to the problem of providing a wave theoretical 
justification for the classical theory (cf [6-111 and references cited therein). For 
non-dispersive waves, this problem has been solved for the simplified case of free-space 
propagation [8-111. The solution consists of deriuing the classical radiative transfer 
equations from an exact, geometrical theory of freely propagated fields based on the 
wave theory of partially coherent fields by imposing well-defined approximations on 
the exact, geometrical theory. The classical theory is then shown to apply within a 
quasihomogeneous approximation for which the spatial coherence of the field is related 
to the classical specific intensity by a plane wave expansion that corresponds to a 
modified Debye integral [ I l ,  12-14]. A similar expansion is often used for deriving 
the radiation transfer equation from the Bethe-Salpeter equation which describes the 
propagation of waves in random media [15,16], however, that derivation is not based 
on a general solution of the field equations but rather on an ad hoc assumption of the 
functional form of the solution. 

0305.4470/92/205263+ 16907.50 @ 1992 IOP Publishing Ltd 5263 
.. 



5264 H M Pedersen and 0 J L0kberg 

In the present paper, we extend the previous exact solution for non-dispersive, 
scalar waves [9-111 to the case of freely propagated, dispersive water waves and, to 
that end, analyse the radiative energy transfer for partially coherent, linear surface 
waves in water of constant depth. In section 2, we review the classical radiative energy 
transfer relations and show that they are based on a phenomenological foundation 
which neglects the wave nature of the radiation. In  section 3, we develop the coherence 
theory description of linear surface gravity waves and, in section 4, we apply this 
theory to derive the exact radiative energy transfer relations for such wavefields. In 
section 5 ,  we present an exact, geometrical description in terms of radiative energy 
transfer equations which are almost identical to  the classical ones and, in section 6, 
we show that this description reduces to the classical radiative transfer relations within 
an approximate quasihomogeneous wave model. Finally, in section I, we summarize 
the results of the paper and briefly discuss their relevance to the problem of wave 
energy prediction. 

2. The classical theory of radiative energy transfer 

The classical description of radiative energy transfer dates back to the works of 
Kirchhoff and Planck (cf [l]) which form the basis of the radiative transfer theory of 
Chandrasekhar [2]. The main assumption of this description is that the radiative energy 
transfer is described by one single scalar function-the 'specific intensity' or 'radiance' 
function Io(& s)-which describes the local distribution of the spectral energy flux 
density over ray directions s (s being a unit direction vector). This specific intensity 
function is assumed to possess a number of properties which are postulated on the 
basis of geometrical optics. 

According to this description, the mean energy surface density E ( x )  and the mean 
energy flux surface density F ( x )  at a point x = {x, y )  in the surface plane can be 
represented as integrals over corresponding spectral densities, i.e. 

E ( x )  = E ( &  w )  d o  (2.1) lo- 
F ( x )  = F(x,  w )  d o  lom 

where w is the angular frequency, and the spectral densities E ( x ,  a) and F(x, w )  are 
given in terms of the specific intensity Io(& s) by: 

(2.4) 

"A-m .. -2.. ,A,. :- .l.̂ I_^.._ ..e,̂ :̂... ...La-- L.- 1 - 1 ,  :- ,I.- ,-..,,- ,,"A I i r  
"=I=, Ys-"W/"K LS ,,,G g,uup *C'"*"J, w,,r,r n - & , # , A  L 1  ..L1 "".*......."I. V.2" I. .I 

the wavelength at angular frequency w, s = { s ~ ,  sy)  = [cos O(s), sin O b ) )  is a unit direc- 
tion vector, and dO(s) is the infinitesimal angular element around the direction vector 
s. Equations (2.3) and (2.4) imply the assumption that the radiative energy is propagated 
along geometrical rays so that the flux density associated with the ray direction s is 
equal to the corresponding energy density times the group velocity. The resulting 
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energy and energy flux densities are then given by direct summation over all the 
contributing ray directions. 

The specific intensity function I,,(& s) is assumed to satisfy the geometrical propaga- 
tion law 

S .  vro(x, S) = o (2 .5 )  

so that, for each s, I,,(x, s) is constant along rays in the s direction. As an energy flux 
density, I ,  is also assumed to be positive, i.e. 

ro(x, S) 3 0. (2.6) 

Equation (2.5) applies for the case of free propagation which is the only case that will 
uc: LUIIJIYGLC" LIGLC. 11 auJu,prruLl U, *L'l,LG,,,,E 1D p,c>c,r,, L l l F  ldUl'l l lUll  ua.mlrLG "yuau"" 

(2 .5)  must be modified to include a source term for appropriate modelling of such 
phenomena [23. Note that equations (2.2), (2.4) and (2.5) imply that F satisfies the 
energy conservation equation for stationary fields: 

I-.- --..":A..-"J I---- ,* "I."--.&:.... ^ _ ^ ^  "**-L..-:" ------ 1 .I-̂ --A:..*:-- L",......" ~ .̂.̂  t:,... 

v . F ( x )  =o. (2.7) 

As pointed out already by Planck [I], the classical description, as summarized in 
equations (2.1)-(2.6), is a phenomenological theory which neglects the wave nature of 
the radiation. Although this description is plausible from a geometrical optics point 
of view, it is not a priori obvious that the predictions of this theory actually correspond 
to the energy transfer of the wavefield. To obtain a rational foundation of the classical 
description, we must derioe it on the basis of statistical wave theory and show that it 
is in agreement with the physics of the wave phenomenon considered. For non- 
dispersive, scalar waves such a derivation has been given in [9-111. There, it is shown 
that the classical theory applies within an approximate, quasihomogeneous wave model. 
Here, we will give a similar derivation for partially coherent, linear, dispersive water 
waves. 

3. Coherence theory for linear water waves 

In this section, we first review the basic relations for surface gravity waves in water 
of constant depth. We then develop a statistical description for such waves and show 
that their average properties can be described within the mathematical framework of 
optical coherence theory. 

In the linear approximation, surface gravity waves in water of constant depth d 
are described by the following set of equations [17]: 

v24 = 0 - d s z s O  (3.1) 

g7)+-=0  
r = O  

:: 1 
(3.2) 
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Here, -$=+(r, 1 )  (with r={x,y,z))  is the velocity potential (i.e., u(r, t )=V4(r ,  t )  is 
the fluid velocity), g is the acceleration of gravity, and q = q ( x ,  t )  (with x = {x, y}) is 
the surface elevation due to the wave motion. The free surface is at z=O and the 
horizontal bottom is at z = -d. Equations (3.1)-(3.3) describe the case with no viscosity 
and friction losses, but in the linear approximation the wave heights and particle 
velocities are so small that viscosity and friction losses at the bottom are negligible. 
If friction losses are appreciable the amplitudes will generally be so high that non- 
linearities must also be taken into account. 

In this linear approximation the energy transport is determined only by the travel- 
lingwave solutions of equations (3.1)-(3.3). For travelling waves, we may represent 
the real functions + and q in terms of their complex analytical signals @ and V which, 
obviously, also satisfy equations (3.1)-(3.3), i.e. 

H M Pedersen and 0 J LBkberg 

4 = R e @  q = R e  V. (3.4) 

It is now easily verified that the general travelling-wave solutions of V and @ can be 
expressed as [17-19] 

V(x,  t) = I,” U(x,  U )  exp(-iot) dw 

and 

“cosh{k(z+d)} g 
@(” Jb cosh(kd) iw 

- U(x,  o) exp(-iwt) dw 

where U(x, o) is the spectral amplitude of the surface elevation, i.e, 

U(x, w )  =- q(x ,  t )  exp(iot) d t  O Z O  

(3.5) 

(3.6) 

(3.7) 

o is the angular frequency, and k = k ( o )  is determined by the positive root of the 
dispersion relation [3,4, 171 

0 2 = g k  tanh(kd). (3.8) 

Substituting equations (3.4)-(3.6) into equations (3.1)-(3.3), we see that U ( x ,  o) 
satisfies the Helmholtz equation [18,19] 

V2U(x, U ) +  k2u(x,  w )  =O. (3.9) 

Thus, by a spectral decomposition, the propagation of linear surface gravity waves in 
water of constant depth can be described by the same reduced wave equation (the 
Helmholtz equation) that is used for describing other, non-dispersive wavefields. 

For a fluctuating, partially coherent wavefield, we can only predict statistical 
moments of the potential @(r, t )  and the surface elevation q(x, t ) .  If the wavefield 
obeys stationary statistics, so that averages of the type (+(I l ,  t l )4(r2 .  t2 ) )  depend on 
t 1  and t, only through the time delay T = t2 - t , ,  then all second-order statistical averages 
can be expressed in terms of complex coherence functions. Since the complex analytical 
signals are band limited (with only positive frequencies), stationary, random functions 
of time, the following rule applies for the evaluation of the averages: 
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where the asterisk denotes complex conjugation and the brackets denote statistical 
averages, i.e. ensemble averages. Here, we have made use of the relation 

Re zI Re z2 =:(z, + z?)(z2+z?) =%ztz2+ z ,z?+z,z ,+ z:t2*) = f  Re(zfz2+z,z2) (3.11) 

and the fact that ( W r , ,  tl)@(r2, t,)) = O  for a stationary, random process [20]. For our 
analysis, we need the following coherence functions: 

(3.i2) P ,- -, ~ ,**,. 
i e ( r l , ~ 2 ,  TJ=\ 'Y  ( r , ,  t - T ) @ ( i , , f ) )  

and 

rv(xx,,x2,T)=w*(xI, t-T)v(x2,t)). (3.13) 

From equations (3.5) and (3.6), it follows that To and r, are both determined by 

r.(x,,x2, 01,02) =(u* (x , ,  ol )u(~2 .  ~~ (3.14) 

Substituting equation (3.5) in equation (3.13), we see from the stationarity condition 
that the cross-spectral coherence function must satisfy 

r.(x,,x2, 0 1 ,  w ) =  WJX,, x,, w ) s ( w - o f )  (3.15) 

the following cross-spectral coherence function 

where 

W.(x,, x,, o) =- r,(x,,x2. T )  exp(iw.r) dT (3.16) 
27r I- -m 

is the cross-spectral density function (cf [6] and [21]) for the surface elevation. 
By multiplying equation (3.9) and its complex conjugate by, respectively, U*(%'. w ' )  

and c(x ' ,  o'), we obtain from equation (3.15) after averaging and integration over 0' 

(3.17a) 

(3.176) 

where V, and V, operate, respectively, on the XI and x2 coordinates of W&,, x,, o), 
ideiitica; 

to Wolf's reduced wave equations for the propagation of the cross-spectral density 
function [6,22]. We note that the only influence of the dispersion enters through the 
w dependence of k as given by equation (3.8). 

Substituting equation (3.6) in equation (3.121, we obtain from equations (3.14) and 
(3.15) 

0: W"(X,, x2, w )  + k2W"(XI, x2,o) =o 
0: W"(X,, x,, w )  + k2 W"(X,, x,, 0 )  = 0. 

.w&rc k=k(wj  is as ;y equaiioil (3.8). Equa~ons  (3,J7a, b) 

r * ( r , , r , , ~ ) =  W,(r,,r,,o)exp(-ioT)dO (3.18) I% 
where the cross-spectral density function WO for the velocity potential is given by 

Here, rj = xj+zje, (j= 1,2) where e, is the unit vector in the z-direction. 
Equations (3.18), (3.19) and the inverse transform of equation (3.16), Le, 

(3.19) 

(3.20) 
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provide a complete description of the second-order moments of the wavefield in terms 
of the cross-spectral density function of the surface elevation W,,. Equations (3.18)- 
(3.20) and the propagation equations (3.17~1, b)  constitute the coherence theory descrip- 
tion of fluctuating, linear surface gravity waves in water of constant depth. 

For the description of radiative energy transfer, it is useful to express the cross- 
spectral density function as a function of mean and difference coordinates, i.e. we use 
the function W(x, 6 )  = Wu(x-c/2, x+&/2,  w )  where the new coordinates are x =  
(x,+x2)/2 and 6 = x2-x,. In terms of the new coordinates, the propagation equations 
(3.17a, b) are transformed into D o h ’ s  equations [23]: 

V $ W ( x , e ) + k 2 W ( x , 6 ) + ~ V 2 W ( x , & ) = O  (3.21a) 

v,. v W(x,  6 )  = o  (3.216) 

where V and V, operate, respectively, on the x and 6 coordinates. We have now arrived 
at precisely the same formalism for the description of partially coherent water waves 
which was used in [9-111 for the description of non-dispersive scalar waves. However, 
before we make further use of this analogy, we must consider the exact energy relations 
for partially coherent water waves. 

H M Pedersen and 0 J LHkberg 

4. Wave theory of radiative energy transfer 

Here, we first review the basic energy transfer relations for linear waves in water of 
constant depth. We then make use of the results of the preceding section and derive 
exact radiative transfer relations for partially coherent waves. 

The energy surface density of the wavefield is obtained by considering the kinetic 
and potential energy density of the fluid motion associated with the wave propagation, 
i.e. [3] 

where p is the mass density of the fluid. The energy flux surface density 9 is defined 
by the energy conservation equation [31 

c + v  ..%=o. 
J t  

It can be shown from equations (3.1)-(3.3) that equation (4.2) is satisfied if [3] 

(4.2) 

(4.3) 

In principle one may add any vector with zero divergence to the expression in equation 
(4.3) and still have equation (4.2) satisfied. However, that ambiguity is removed by 
the additional requirement that the flux density be a quadratic functional in field 
variables which approaches zero as the wave motion vanishes. Equations (4.1)-(4.3) 
describe the instantaneous energy relations. For a partially coherent wavefield, 
instantaneous quantities cannot be predicted. Instead, we must then consider average 
quantities. 
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The average energy relations are obtained by averaging equations (4.1) and (4.3). 
By straightforward calculations, we find by usingequations (3.101, (3.12), (3.131, (3.18), 

~ and (3.20): 

where 
0 

E ( & w ) = $ { g W . ( & & ~ ) + I  -d  [ V l V 2 W ~ ( r , , r 2 , 0 ) l , , = , ~ = . d z ]  (4.6) 

(4.7) F(x, 0) =zj-d [(V2-VJW&, rz ,  0)1,,=,~=. dz. 
0 

Pm 

In obtaining equation (4.7). we have made use of the symmetry relation WO( rz , rI , w ) = 
W$(rl, rz ,  w ) .  Note, that equations (4.4) and (4.5) are equal to the corresponding 
equations (2.1) and (2.2) of the classical description, but instead of the phenomenologi- 
cal equations (2.3) and (2.4) we now have the exact expressions in equations (4.6) and 
(4.7) for the spectral densities. 

Substituting from equation (3.19) in equations (4.6) and (4.7), we find 

and 

The z-integrals in equations (4.8) and (4.9) are easily evaluated. They are 

sinb2[k(z+d)] tanh(kd) . 2kd ] 
2k sinh(2kd) 

d r  = I-., coshz(kd) 

[ "sinh(2kd) 2kd 1 cosh2[k(z+d)] tanh(kd) 
2k 

dz  = 
cosh*(kd) 

(4.1 1) 

Here, we have made use of the dispersion relation (equation (3.8)) and the expressions 
for the phase velocity up and the group velocity us: 

v ' k  =?= d f t a n h ( k d )  (4.12) 

(4.13) 
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Substituting equations (4.10) and (4.11) in equations (4.8) and (4.9), we get 

H M Pedersen and 0 I L5kberg 

(4.18) 

We now change to mean and difference coordinates as in section 3. Straightforward 

(4.16) 

transformation then gives 

[(V2-V1) Wu(xi, 1 2 %  w)lx,-.,=x=2[V,W(~, C)Is=n 
and 

V,V2W"(Xl, x 2 , w )  = + v 2 w ( x ,  o - v ; w x ,  5) .  
Combining equation (4.17) with equation (3.21a), we find 

(4.17) 

[VlV2W.(xl,x,, o ) ] . , = , , = , = ~ V 2 W ( x , 0 ) + k f W ( x , 0 )  (4.18) 

sinceV,=V/Z-V, andV2=V/2+Vg.Whenequations (4.16)and(4.18) aresubstituted 
in equations (4.14) and (4.18), we finally obtain 

1 
E ( x ,  w ) = - p g  l + % T V 2  W(x,O) 

2 ( ;p4; ) (4.19) 

(4.20) 

Equations (4.19) and (4.20) for the spectral densities, the spectral integrals (equations 
(4.4) and (4.8)), and the propagation relations (equations (3.21a, 6 ) )  constitute the 
exact wave description of radiative energy transfer for fluctuating, linear surface gravity 
waves in water of constant depth. 

Equations (4.19) and (4.20) are amazingly similar to the corresponding relations 
for three-dimensional, non-dispersive, acoustical waves derived in [9] and [ I l l ,  i.e. to 

1 1 
JTx,  0) =j Pgv ' z  [V,W(X, C)Is-o. 

(4.21) 

(4.22) 

where p is the density of the medium and W(r, 5) is the cross-spectral density for the 
acoustical pressure variations expressed in the three-dimensional mean and difference 
coordinates r and 6. Except for the constants, the only differences between equations 
(4.19). (4.20) and equations (4.21), (4.22) are that the latter apply for non-dispersive, 
three-dimensional waves for which us= up. Therefore, the same basic formulas apply 
in the two cases. Our results show a close analogy between both the energy relations 
and the propagation equations for surface gravity waves and three-dimensional acous- 
tical waves. This analogy illustrates a basic unity of wave phenomena which are 
physically very different. It also demonstrates that spectral methods are extremely 
powerful for analysing different wave phenomena. 

In concluding this section, we notice that, in general, we have no equipartition of 
the kinetic and potential energy density for a partially coherent wavefield. From 
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equations (4.1) and (4.6), we find that the mean spectral potential energy density is 
given by 

E&, 0) =$pgW(X, 0) (4.23) 
and from equation (4.19) it follows that the corresponding density for the kinetic 
energy is: 

(4.24) 

Clearly, E,(x, o) is generally different from EJx, 0). A similar violation of the 
equipartition principle occurs also for acoustical waves. Strictly, the equipartition 
principle holds only for perfectly homogeneous wavefields, i.e. fields for which the 
intensity W(X, 0) is constant as a function of position x so that the energy density is 
proportional to the intensity. However, the equipartition principle is seen to hold 
approximately if W(x, 0) varies little with x on a scale of I/k=A/(2?r). 

E , ( x , o ) = E ( x , o ) - E , ( x , o ) = - p g  w ( x , o ) + ~ , 0 2 w ( x , o ) ] .  V I  

4 l [  vD 2k 

5. Exact, geometrical radiative transfer theory 

Having established that the transformed Wolf equations (3.21a, b) describe the cross- 
spectral density function for partially coherent water waves, and having derived the 
exact energy relations (equations (4.19) and (4.20)), we now use the same approach 
as in [ I l l  to derive exact, geometrical energy transfer relations for water waves. To 
that end we first give an exact, formal solution of equations (3.21a, b)  and show that 
it leads to an exact, geometrical description of both the radiative energy transfer and 
ihe coherence properiies of ihe iieid in ierms of a generaiized specific iniensiiy iunciion 
I ( x ,  s) which, like the classical specific intensity Iu(x, s), is constant along rays. 

If we assume free propagation, i.e. neglect evanescent waves, the general solution 
of equations (3.17a, b )  can be expanded in homogeneous plane waves as [l l]:  

W&,, 1 2 ,  U) =- ('" 1u2=C(s,,s2)exp[ik(s2 .x2-s, .x,)]dO(s,)dO(s,) (5 .1)  

where C(s,, s2) is the directional correlation of the plane wave components in the two 
directions s, and s2 and dO(sj) is the infinitesimal angular element around the unit 
vector 4 (j= 1,2). Introducing the mean and difference coordinates x, 6, Q = 
(sI+s2)/2= Qs, and q = s , - s , ,  where Q=m, equation (5.1) can he written as 

2rr U 

s(Q9 e) exp[[ik!e. X +  0 .  :)I dO(s:) dO(s?)  (5 .2 )  
k f'" I"' 

W ( ,  5) = - 
2~ J o  J o  

where S(Q,q)=C(Q-q /2 ,Q+q/2 ) .  Choosing t h e y  axis along Q=Qs, we easily 
see that dO(s,) dO(s2) = dO(s) dqJQ where qx is the component along the line q .  s = 0. 
Equation (5.2) can then be written as 

(5.3) 

where d'q = dq, dq, and the Dirac &function S ( q  . s) in the inner integral implies that 
the integral has a contribution only along the line q .  s = 0, i.e. along qx. By substitution, 
we sasrry set: L n a ,  Cq""L1"'L , J J ,  1J a J"L"Ll"*l "L S'1"",1""" \-'.&'U, LLLl" , > .LL" , .  

.-^:I.. ... *LA. -.:-.. I C  9, :.. - I ̂I... :-- ̂ F ~ ^..^. I ,  1, "\ "..A (1  1, I.\ 
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Note that the inner integral in equation (5.3) is a Fourier expansion of the x 
dependence. Since no evanescent waves contribute in the expansion in equation (5.1) 
we have S(Q,  q )  = O  for 9 2 2 ,  and the q dependence in the roots in the denominator 
and the exponent in equation (5.3) can always be developed in a power series in q. 
Any such dependence on ikq in the inner integral can then be replaced by the same 
operator dependence on V outside the inner integral, where the operator is to be 
ucvcrupcu ,I1 puwccs U1 v .  111 U l C  lulluwlllg wc W l l l  LllaKc exLcIIsIVc USE U, ,,,IS propeny 
in order to derive the exact geometrical theory of radiative transfer. 
A , - - -A  :.. -C" r.. .L^ '--,I :^" ... ̂ __.:I ,  .--I.- :..- ...- ̂ *.I.:̂  _.._. -_ 

Substituting the solution in equation (5.3) in equation (4.20), we have 

which can be directly written as 

F(x,  UJ) = lo2" I ( x ,  s)s dO(s) 

where 

( 5 . 5 )  

is a generalized specific intensity which is seen to be constant along rays, i.e. it satisfies 

S. vr(q S) =o. (5.7) 

This result directly follows by substituting equation (5.6) in the left-hand side of 
equation (5.7): the operator s .  V gives rise to a multiplicative factor i!q * s in the inner 
integral, and then the integral vanishes since it only has a contribution along the line 
q . s = o .  

When equation (5.3) is substituted into equation (4.19), we again make use of the 
fact that a dependence on ikq in the roots in the inner integral can be replaced by the 
same operator dependence on V outside the integral. It is then easily seen from equation 
(5 .6 )  that 

= [ 1 +(:-:) L V 2  +. . .] j2" I ( x ,  s) de(s) (5.8) 
2 4k2 % 0 

where we have developed the operator in powers of V2. 
Except for the operator in equation (5 .8 ) ,  the exact equations (5.5). (5.7), and (5 .8 )  

are of the same form as the corresponding classical expressions (equations (2.3)-(2.5)). 
If I ( x ,  s) varies little with x on a scale of I l k =  A/(Zm) (with A being the wavelength), 
then only the leading term of the series development in equation (5.8) will contribute 
significantly and this equation will also be of the same form as the corresponding 
classical equation, i.e. 
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Note that equation (5.9) is valid within the same approximation as the energy equiparti- 
tion principle (cf section 4). 

Replacing the ikq dependence in the roots in the denominator and the exponent 
of equation (5.3) by the same operator dependence on V outside the inner integral, 
we can now express the cross-spectral density function in terms of the generalized 
specific intensity by the operator equation 

where the operator is to be developed in powers of V', i.e. 

1 
128 

+- {3 -3iks. 6-  (ks. &I2} (5.10b) 

In the short wavelength limit, k +  a, or if I ( x ,  s) is a 'slow' function of x, only the 
leading term of this expansion will contribute. To see that equation (5.10a) is equivalent 
..Ah nn..d:n.. I C  1 1  ..._ ,...I.. L - . . . ~  +.. -.. I-...:...-- r l -  -\ c--- .:-- I =  I\ :- 
."I... byUP..".. ,-'.a, w c  V.L'J II'IIC- I" DUVULI,"Lc: I\&, 3, LLVlll c;yuarrucr ,,.o, 111 Cyu"L'"L1 

(5.10a) and replace the dependence on V in the operator expression by the same 
dependence on ikq the inner integral. 

If we have no directional ambiguity, i.e. do not simultaneously have contributions 
from rays in the directions s={s,,Is,l) and s'={s,, -Is,/}, we can make a formal 
Fourier inversion of equation ( 5 . 1 0 ~ )  1111 and obtain the following explicit operator 
expression for the specific intensity: 

where s = {sx, s,], sv =-, and e, is the unit vector in the x direction. Choosing 
the y-axis along s, we see thal this expression reduces to 

(5.12) 

where d2f = d5, dt, and S(s.  6) implies that the integral only has a contribution along 
the line s. t = O .  If W(x, 6) is a 'slow' function of x on the scale of l / k = A / ( 2 n ) ,  
equation (5.12) reduces to 

271 k j  1 
2 

I(x, s) =-pgug[l+V2/(4k2)l- S(S. 6) W(x, 6) d2.$ 

I ( x ,  s) =-pgu8 - S(S.  5) W ( x ,  5) d2f. (5.13) 

Equations (5.12) and (5.13) only apply if we have no contribution from the opposite 
ray direction, i.e. if I ( x ,  -s) = 0. In the general case, an explicit expression of the 
generalized specific intensity is obtained from the representation [ 111 

2 ' 271 k I  

where d2K = dKx dKy and 

(5.14) 

W(x,  K) = W(X, E) exp(-iK. 5) d25 (5.15) s 
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is the Wigner distribution for the cross-spectral density function. Substituting equation 
(5.14) in equation (4.20) and introducing polar coordinates, we obtain 
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which, by comparison with equation ( 5 . 9 ,  gives the general expression: 

I (X,  S) = pgU, ($)' j: w(X, KS)( K2/ k) dK. (5.17) 

In [I 13, equivalent inversion formulae for three-dimensional acoustical waves are 
derived and shown to reproduce the correct wave description of radiative energy 
transfer. The only difference between the description in [ll] and the present one is 
that here we consider dispersive, two-dimensional surface waves. In particular, it was 
shown by examples in [ 111 that the exact, geometrical theory provides both the ordinary 
geometrical optics approximation to radiative energy transfer and a ray description of 
interfering fields. These examples apply directly to the present case as well. 

From the representation in equation (5.1), we now easily find 

(5.18) 

where S(s - so) is a short-hand notation for a( 8 - 8,) with s = {cos 8, sin 81 and so = 
{cos So, sin eo}. This expression is easily transformed to the one in equation (5.6). As 
in [ l l ]  we can now easily recover equation (5.1) by substituting equation (5.18) in 
equation (5.10a) and replacing V in the operator expression by ik(s2-sI). We see from 
equation (5.18) that we have a positive contribution from the plane wave component 
in ihe direciion sI = s2 = s. in addiiion, we have coniribuiions from aii pairs of correiaied 
plane waves with interference fringes along s. The latter interference contributions are 
not necessarily positive. 

The present exact, geometrical description of the radiative energy transfer is formally 
very similar to the classical description. But, although equations (5.5). (5.7), and (5.9) 
are formally identical to the corresponding classical relations, the generalized specific 
intensity I(%, s) cannot generally be identified with the classical specific intensity 
l0(x, s). The reason for this is that the present geometrical description applies for any 
field that can be represented by equation (5.1) so that the theory includes proper wave 
phenomena like interference and diffraction which are excluded from the classical 
description. Therefore the generalized specific intensity must possess properties 
different from those of the classical specific intensity, even when the approximation 
in equation (5.9) is vaiia. in particular, ihe generaiized specific iniensiiy cannoi be 
assumed to be a positive quantity (cf equation (2.6)) if interference and diffraction 
phenomena are to be included in the description. Nevertheless, the close formal analogy 
between the exact description derived here and the classical description of section 2 
indicates that the latter can be derived by imposing appropriate approximations on 
the exact description. As we will see, this is the case in the quasihomogeneous 
approximation. 
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6. The quasihomogeneous approximation 

We here use the same approximations as in [ l l ]  to derive the classical description of 
radiative energy transfer on the basis of the exact description of the preceding section. 

The exact theory of the previous section applies for arbitrary fields that can be 
represented by the plane-wave expansion in equation (5.  l ) ,  and it therefore also includes 
interfering and diffracted fields. To derive the classical theory we assume that the field 
is such that the directional correlation vanishes, i.e. C ( s , ,  s2) = 0, for Is2 - S I I  3 
2 sin( !3,/2) where the coherence angle 8, is a measure of the largest angular difference 
between correlated plane waves of the field. If the coherence angle is small, we only 
have contributions to equation (5.1) when s I = s 2 ,  i.e. when q = I s 2 - s , I < <  1. Then 
Q =-- 1 and equations (5.3) and (5.6) can, respectively, be written as 

and 

I ( x , s ) = - p g u  - S ( s , q ) 6 ( q . s ) e x p ( i k g . x ) d 2 q .  (6.2) 2 82.n k - l  
Equation (6.1) can also be obtained by retaining only the leading term of the series 
development in equation (5 .10b) .  This approximate solution of equations (3.21a, b )  
was first given by D o h  [23] by a totally different approach. 

If the generalized specific intensity I ( x ,  s) is a ‘slow’ function of s compared to 
the coherence angle, we can approximate I ( x ,  s) by its local average over an angle A B  
much larger than the coherence angle. From equation (5.18) we then obtain 

1 
2 

x-ls,+s,l exp[ik(s,-s,) . X I  dB(s,) dB(s2) 

C(s,,s2)exp[ik(s2-s,) ~x]dO(sl)dB(s2) (6.3) 
1 1  k ___  

A B  2 pgu8z I,, 
where the last approximation applies because we only have contributions when s, and 
s2 are within the coherence angle, i.e. when \s2-sl\<< AB so that s, =s2 .  In this case, 
we see that the specific intensity is positive since it is proportional to the intensity of 
the field from an angular aperture AB. From equations (6.1) and (6.2) it can now be 
shown that the generalized specific intensity must also be a ’slow’ function of x 
compared tu the local transverse coherence length, which is a measure of the maximum 
distance [=Ix2-x,I for which W ( x , , x 2 , 0 ) # 0  along the line x’s=constant [9,11]. 
Then equations (5.9) and (5.13) also apply and all the radiative transfer relations are 
formally equal to the classical ones. 

In this approximation, our generalized specific intensity possesses all the properties 
of the classical specific intensity and, thus, can be identified with the latter [9,11], i.e. 

(6.4) r ( q  S) = MX, 8). 
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Substituting from equation (6.4) in equation (6.1), we obtain 
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Equation (6.5) is a generalized van Cittert-Zernike theorem which defines our 
quasihomogeneous field model. This model applies for fields for which the radiative 
energy transfer is described by the classical theory. The classical van Cittert-Zernike 
theorem, which applies for radiation from incoherent sources, reduces the calculation 
of the cross-spectral density function to calculation of the diffracted field around a 
focus in an equivalent diffraction problem. Similarly, the generalized theorem in 
equation (6.5) corresponds to the equivalent diffraction problem of calculating the 
diffracted field around a focus in the so-called modified Debye approximation [ 12-14]. 

T h e  present quasihomogeneous model is formally different from the one due to 
Carter and Wolf [24], but the physical approximations involved are closely related. A 
completely homogeneous field is one for which the cross-spectral density and the 
specific intensity are independent of the position x whereas a quasihomogeneous field 
is one for which the x-dependence of these quantities are 'slow' over distances 
comparable to a local transverse coherence length of the field. However, in contrast 
to the Carter-Wolf model, our model does not imply that the dependencies on the 
mean and difference coordinates are separable. 

Within the quasihomogeneous approximation, the inversion formulae (equations 
(5.13) and (5.16)) can be replaced by simple Fourier inversion formulae. If the bundle 
of rays contributing to equation (6.5) subtends an angle less than ?i so that all ray 
directions s have a positive sv component, we obtain by direct Fourier inversion of 
equation (6.5) 

1 k "  
I0b, s ) = ~ w , s , g  I-, W b ,  Lex)  exp(-iks,5,) de,. (6.6) 

Here, x = {x, y ) ,  s = {sx, sy]  is a unit vector, and e, is the unit vector in the x direction. 
Equation (6.6) is equivalent to Walther's first deflnition of the radiance function [25]. 
For s chosen along the y axis, this expression reduces to equation (5.13). 

If we have directional ambiguity we must use a modified inversion formula in order 
to distinguish between rays in the directions s={s,,  IS,^] and s'={sx, -Is,l]. This can 
be achieved in several ways, for example by using the general inversion formula in 
equations (5.15) and (5.17). A possible Fourier inversion formula for this case is given 
by 

By choosing the y axis along s we then obtain 

In [ 9 ]  and [ll], it was shown that the present quasihomogeneous approximation 
implies that the field obeys Gaussian statistics. The statistics of such Gaussian fields 
are completely determined by the second-order coherence functions which, through 
equation (6.5) and equations (3.18)-(3.20), are now given by the classical specific 
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intensity. Thus a complete statistical wave model is provided in terms of the classical 
description of radiative energy transfer. This statistical wave model, defined in terms 
of the phenomenological variables, constitutes the rational justification of the 
phenomenological description in complete analogy with the statistical justification of 
thermodynamics [26]. 

7. Summary aud discussion 

In this paper, we have shown that the energy transfer for partially coherent, linear 
surface gravity waves in water of constant depth can be described by the classical 
theory of radiative energy transfer if the wavefield can be approximated by a 
quasihomogeneous wave model. In doing so, we have first developed a coherence 
theory description for linear water waves and shown that the partially coherent wave 
motion is described by the same reduced Wolf equations that are used in optical 
coherence theory. On that basis, we have derived exact average relations for the wave 
energy transfer and shown them to be completely analogous to the corresponding 
relations for non-dispersive acoustical waves. Using previous results for non-dispersive 
waves, we have then established an exact geometrical description of radiative energy 
transfer which is formally very similar to the classical theory. Finally, we have intro- 
duced the quasihomogeneous wave model for which the exact description reduces to 
the classical theory of radiative ehergy transfer. 

Our results illustrate the basic unity of wave phenomena that are physically different. 
We have found that both the propagation equations and the energy relations are given 
by almost identical formulae for non-dispersive acoustical waves and for dispersive 
water waves. The only difference is due to the dispersion which, for water waves, 
causes the group velocity to differ from the phase velocity. Our results also demonstrate 
that a spectral description is very powerful for revealing analogies between different 
wave phenomena. 

Geometrical ray-trace calculations of wave energy transfer are routinely used in 
fields like harbour engineering and wave energy utilization for predicting the effects 
of near-shore refraction and focusing on the local wave climate [3, 18, 19,271. Our 
results indicate that such an approach is justified if the quasihomogeneous wave model 
is a good approximation of the sea state, i.e. if the specific intensity is a ‘slow’ function 
of direction and position compared to, respectively, the coherence angle and the local 
transverse coherence length of the field. In addition, the exact energy relations derived 
in section 5 can be applied in regions where the quasihomogeneous approximation 
breaks down and interference and diffraction phenomena becomes appreciable. 
However, the present results are limited to linear waves in water of constant depth. 
Further work is needed to extend the description to include depth variations and 
nonlinearities. 
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